Evidence that solar wind fluctuations substantially affect the strength of dayside ionospheric convection
نویسندگان
چکیده
[1] Ionospheric convection is occasionally observed to be substantially enhanced even when the interplanetary magnetic field (IMF) is not strongly southward and the IMF By is not large. Such enhanced convection flows tend to exhibit large oscillations with !10–30 min periodicity. We have considered the solar wind characteristics that lead to these oscillatory convection enhancements. We have used an extensive set of Sondrestrom radar observations of ionospheric convection within the dayside polar cap. We find that IMF ULF power is closely associated with the strength of dayside convection. Convection flows during periods of large north–south IMF fluctuations are observed to be as strong as for steady and large southward IMF periods. Enhanced convection is also observed during northward IMF intervals when the interplanetary magnetic field exhibits high ULF power. We find that ULF power enhances the convection strength, independent of an observed direct effect from the solar wind speed. These observations thus suggest that IMF ULF fluctuations can significantly influence ionospheric convection. Therefore, in addition to the well-established contributions from the direction and magnitude of the IMF and the solar wind dynamic pressure, ULF fluctuations may also be an important contributor to coupling of the solar wind to the magnetosphere-ionosphere system. We speculate that resonance between IMF fluctuations and natural magnetospheric oscillation frequencies or magnetopause boundary oscillations might be responsible for the connection between ionospheric convection and IMF ULF power. We have also found evidence for a connection between the ULF power in the solar wind dynamic pressure and the strength of convection.
منابع مشابه
Evidence that solar wind fluctuations substantially affect global convection and substorm occurrence
[1] We have used examples of Poker Flat and Sondrestrom incoherent-scatter radar observations of flows within the ionospheric mapping of the nightside plasma sheet and of Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft observations within the nightside plasma sheet to investigate whether the features found in the companion paper by Kim et al. (2009) withi...
متن کاملSolar wind Alfvén waves: a source of pulsed ionospheric convection and atmospheric gravity waves
A case study of medium-scale travelling ionospheric disturbances (TIDs) that are correlated with solar wind Alfvén waves is presented. The HF radar groundscatter signatures of TIDs caused by atmospheric gravity waves with periods of 20–40 min are traced to a source at high latitudes, namely pulsed ionospheric flows (PIFs) due to bursts in the convection electric field and/or the associated iono...
متن کاملTemporal evolution of the transpolar potential after a sharp enhancement in solar wind dynamic pressure
[1] Recent studies of ionospheric convection have shown that sudden enhancements in solar wind dynamic pressure have significant effect on the transpolar potential and the coupling efficiency between the solar wind and the terrestrial magnetosphere. Super Dual Auroral Radar Network observations of the dayside convection have demonstrated that the strength of convection correlates well with sola...
متن کاملModulation of dayside reconnection during northward interplanetary magnetic field
[1] On 17 September 2000 the IMF was directed continuously northward for more than 3 hours. Density fluctuations in the solar wind resulted in quasiperiodic variations in the solar wind dynamic pressure, and correlated fluctuations also occurred in the IMF Bz component. The Northern Hemisphere SuperDARN radars observed bursts of highlatitude high-velocity plasma flow during this northward IMF i...
متن کاملRelationship of upflowing ion beams and conics around the dayside cusp/cleft region to the interplanetary conditions
The dayside cusp/cleft region is known as a major source of upflowing ionospheric ions to the magnetosphere. Since the ions are supposed to be energized by an input of energy from the dayside magnetospheric boundary region, we examined the possible influence of the interplanetary conditions on dayside ion beams and conics observed by the polarorbiting Exos-D (Akebono) satellite. We found that b...
متن کامل